Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Impact of Intelligence Methodologies on Education and Training Process
Guest editors: Vijayalakshmi Saravanan
Article type: Research Article
Authors: Peng, Lihua; *
Affiliations: Langfang Normal University, Langfang, Hebei, China
Correspondence: [*] Corresponding author. Lihua Peng, Langfang Normal University, Langfang, Hebei, China, 065000. E-mail: [email protected].
Abstract: With the development of artificial intelligence in education, online education has been recognized by the society as a new teaching method. It can make full use of the advantages of the network across regions, and make full use of the advantages of network technology to share the resources of colleges and universities, which is a promising educational method. In response to the demand of online education for learner information, this paper proposes the learner model Neighbor Mean Variation Multi-Objective Particle Swarm Optimization-Genetic Algorithm (NMVMOPSO-GA). This model includes the learner’s learning interest sub-model, the learner’s cognitive ability sub-model and the learner’s knowledge sub-model. The modelling techniques of the three sub-models are discussed separately, and their status and role in the online education system are analyzed. At the same time, for the knowledge model that reflects the learner’s learning progress and knowledge mastery, a learner knowledge sub-model constructed with Bayesian networks is proposed. The neighbor mean mutation operator is introduced to optimize the multi-objective particle swarm optimization algorithm and improve the convergence performance and stability of the multi-objective particle swarm optimization algorithm. We study the application of multi-objective particle swarm optimization algorithm in online course resource generation service. Through simulation experiments, it is verified that the multi-objective particle swarm optimization algorithm can improve the performance and stability of online course resource generation.
Keywords: Online education, artificial intelligence, intelligent learning, particle swarm optimization algorithm
DOI: 10.3233/JIFS-189390
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 3535-3546, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]