Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Artificial Intelligence as a maturing and growing technology: An urgent need for intelligent systems
Guest editors: X. Yuan and M. Elhoseny
Article type: Research Article
Authors: Mao, Jiana; * | Liu, Jinminga | Zhang, Jiemina; * | Han, Zhenzhongb | Shi, Senc
Affiliations: [a] Computer Engineering College, Jimei University, China | [b] Institute of Electronic Countermeasure, National University of Defense Technology | [c] Electromagnetic Protection Evaluation Technology Research Center, Institute of CETC, China
Correspondence: [*] Corresponding authors. Jian Mao and Jiemin Zhang, Computer Engineering College, Jimei University, China. E-mails: [email protected] (Jian Mao); [email protected] (Jiemin Zhang).
Abstract: The unintentional electromagnetic (EM) emission of computer monitors may cause the leakage of image information displayed on the monitor. Detection of EM information leakage risk is significant for the information security of the monitor. The traditional detection method is to verify EM information leakage by reconstructing an image from EM emission. The detection method based on image reconstruction has limitations: adequate signal sampling rate, accurate synchronization signal, and dependence on operational experience. In this paper, we analyze the principle of image information leakage and propose an innovative detection method based on Convolutional Neural Network (CNN). This method can identify the image information in EM emission to verify the EM information leakage risk of the monitor. It overcomes the limitations of the traditional method with machine learning. This is a new attempt in the field of EM information leakage detection. Experimental results show that it is more adaptable and reliable in complex detection environment.
Keywords: Convolutional neural network, electromagnetic information leakage, image identification, information security, computer monitor
DOI: 10.3233/JIFS-189337
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2981-2991, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]