Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Artificial Intelligence driven Big Data Analytics for COVID-19
Guest editors: Xiaolong Li
Article type: Research Article
Authors: Zheng, Bing | Yun, Dawei; * | Liang, Yan
Affiliations: Department of Information Engineering, Hainan Vocational University of Science and Technology, Haikou, China
Correspondence: [*] Corresponding author. Yun, Dawei, Department of Information Engineering, Hainan Vocational University of Science and Technology, No. 18 Qiongshan Avenue, Haikou 571126, China. E-mail: [email protected].
Abstract: Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.
Keywords: Recurrent neural network, behavior recognition, time series analysis, automatic coder
DOI: 10.3233/JIFS-189290
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8927-8935, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]