Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Artificial Intelligence driven Big Data Analytics for COVID-19
Guest editors: Xiaolong Li
Article type: Research Article
Authors: Jihong, Yanga; * | Lu, Yunb; c
Affiliations: [a] Anhui University of Science and Technology, Huainan, Anhui, China | [b] School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China | [c] Marine Technology Society, Columbia, MD, USA
Correspondence: [*] Corresponding author. Yang Jihong, Anhui University of Science and Technology, Huainan 232001, Anhui, China. E-mail: [email protected].
Abstract: Under the influence of novel corona virus pneumonia epidemic prevention and control, higher requirements for behavior recognition in complex environment are put forward. The accuracy of traditional methods for sports training is not high, so a method is needed to improve the local action recognition to assist sports training. In the process of behavior recognition, if only the track is regarded as an independent individual, the information of its neighbor will be ignored. Therefore, we use KNN algorithm to get the nearest neighbor trajectory. In order to calculate the rich neighborhood information around the track, this paper calculates the complex relationship between the center track and the neighborhood track from four different angles, including absolute motion, relative motion, distance relationship and direction relationship. Then, from the four different perspectives of variance, discrete coefficient, skewness and kurtosis, this paper proposes a large interval nearest neighbor coding method. This method makes the four eigenvalues complement each other and improves the ability of describing complex and changeable behaviors. The experimental results show that the coding method proposed in this paper can be used for behavior recognition according to different transformation matrix.
Keywords: Behavior recognition, track space-time feature, feature matching, fuzzy set
DOI: 10.3233/JIFS-189263
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8675-8684, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]