Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Affiliations: [a] Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China | [b] Jinling Institute of Technology, Nanjing, Jiangsu, China
Correspondence: [*] Corresponding author. Liu Lin, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China. E-mail: [email protected].
Abstract: The difficulty of knowledge point recommendation based on the learning diagnosis model lies in how to perform feature recognition and selection of recommended knowledge points. At present, the recommendation system has certain problems in the accuracy of recommended knowledge points. Based on this, this study mainly studies the personalized problem recommendation of middle school students in the field of education. Moreover, this study takes the answer records of students’ exercises as data, and combines the characteristics of the field of education to propose an exercise recommendation algorithm based on hidden knowledge points and an exercise recommendation method based on the decomposition of student exercise weight matrix. In addition, in order to verify the effectiveness of this research algorithm, this paper selects the accuracy rate and recall rate as evaluation indicators to analyze the recommendation results of this algorithm and the current more advanced CF algorithm, and the statistical experiment results are drawn into charts. The research results show that the method proposed in this paper has certain advantages and can be used as one of the subsystems of the learning system.
Keywords: Text vector model, support vector machine, learning information, personalized recommendation
DOI: 10.3233/JIFS-189239
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2445-2455, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]