Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Chonggao, Pang; *
Affiliations: Guangdong Peizheng College, Guangzhou, China
Correspondence: [*] Corresponding author. Pang Chonggao, Guangdong Peizheng College, Guangzhou, China. E-mail: [email protected]..
Abstract: Classroom student behavior recognition has important guiding significance for the development of distance education strategies. At present, the accuracy of students’ classroom behavior recognition algorithms has problems. In order to improve the effect of distance education student status analysis, this study combines the traditional clustering analysis algorithm and the random forest algorithm to improve the traditional algorithm and combines the human skeleton model to identify students’ classroom behavior in real time. Moreover, this research combines with the needs of students’ classroom behavior recognition to build a network topology model. The error rate of feature reconstruction using spatio-temporal features is lower than that of a single feature. Through experiments, this study verifies the effectiveness of the extracted spatial angle features based on the human skeleton model. The results of algorithm performance test show that the proposed algorithm network structure is superior to the network structure of single feature extraction algorithm.
Keywords: Cluster analysis, random forest, classroom behavior, feature recognition, student behavior
DOI: 10.3233/JIFS-189237
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2421-2431, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]