Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Geng, Xiao; *
Affiliations: Department of Physical Education, Chang’an University, Xi’an, Shaanxi, China
Correspondence: [*] Corresponding author. Xiao Geng, Chang’an University, E-mail: [email protected].
Abstract: Due to the difficulty of athletes’ motion recognition, there are few studies on athletes’ specific motion recognition. Based on this, this study uses the acceleration sensor as the carrier, and uses human-computer interaction to transform the action of the athlete into a machine-identifiable action unit. At the same time, this paper combines the actual situation of human body motion to construct a human body motion model and builds a corresponding computer hardware and software platform. Moreover, this paper designs a classification recognition algorithm that can recognize the movement of athletes and builds SVM model based on machine learning for classification and recognition. In addition, in this study, the effectiveness of the algorithm was studied through experimental comparison. Finally, the simulation analysis was carried out to obtain the corresponding research results, and the results were analyzed by combing statistics. The research shows that the proposed algorithm can classify and recognize the collected motion data, and it has certain effects on the theoretical analysis of athletes’ motion recognition. Moreover, the algorithm can perform motion quality analysis and provide theoretical reference for subsequent related research.
Keywords: Acceleration sensor, machine learning, SVM model, motion recognition
DOI: 10.3233/JIFS-189221
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2229-2240, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]