Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Recent trends, Challenges and Applications in Cognitive Computing for Intelligent Systems
Guest editors: Vijayakumar Varadarajan, Piet Kommers, Vincenzo Piuri and V. Subramaniyaswamy
Article type: Research Article
Authors: Sengan, Sudhakara | Priya, V.b | Syed Musthafa, A.c | Ravi, Logeshd | Palani, Saravanane | Subramaniyaswamy, V.e; *
Affiliations: [a] Department of Computer Science and Engineering, Sree Sakthi Engineering College, Coimbatore, Tamil Nadu, India | [b] Department of Computer Science and Engineering, Mahendra Institute of Technology, Namakkal, Tamil Nadu, India | [c] Department of Information Technology, K.S. Rangasamy College of Technology, Namakkal, Tamil Nadu, India | [d] Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India | [e] School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
Correspondence: [*] Corresponding author. V. Subramaniyaswamy, School of Computing, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India, E-mail: [email protected].
Abstract: Breast cancer should be diagnosed as early as possible. A new approach of the diagnosis using deep learning for breast cancer and the particular process using segmentation strategies presented in this article. Medical imagery is an essential tool used for both diagnosis and treatment in many fields of medical applications. But, it takes specially trained medical specialists to read medical images and make diagnoses or treatment decisions. New practices of interpreting medical images are labour exhaustive, time-wasting, expensive, and prone to error. Using a computer-aided program which can render diagnosis and treatment decisions automatically would be more beneficial. A new computer-based detection method for the classification between compassionate and malignant mass tumours in mammography images of the breast proposed. (a) We planned to determine how to use the challenging definition, which produces severe examples that boost the segmentation of mammograms. (b) Employing well designing multi-instance learning through deep learning, we validated employing inadequately labelled data of breast cancer diagnosis using a mammogram. (c) The study is going through the Deep Lung method incorporating deep multi-dimensional automated identification and classification of the lung nodule. (d) By combining a probabilistic graphic model in deep learning, it authorizes how weakly labelled data can be used to improve the existing breast cancer identification method. This automated system involves manually defining the Region Of Interest (ROI), with the region and threshold values based on the next region. The High-Resolution Multi-View Deep Convolutional Neural Network (HRMP-DCNN) mainly developed for the extraction of function. The findings collected through the subsequent in available public databases like mammography screening information database and DDSM Curated Breast Imaging Subset. Ultimately, we’ll show the VGG that’s thousands of times quicker, and it is more reliable than earlier programmed anatomy segmentation.
Keywords: Deep convolutional neural network, computer-based automated detection, breast cancer screening, deep learning, machine learning, mammography, fuzzy logic.
DOI: 10.3233/JIFS-189174
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8573-8586, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]