Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Recent trends, Challenges and Applications in Cognitive Computing for Intelligent Systems
Guest editors: Vijayakumar Varadarajan, Piet Kommers, Vincenzo Piuri and V. Subramaniyaswamy
Article type: Research Article
Authors: Arun, Ranganathana; * | Balamurugan, Rangaswamyb
Affiliations: [a] Department of CSE, Builders Engineering College, Kangayam, TamilNadu, India | [b] Department of EEE, K.S. Rangasamy College of Technology, Tiruchengode, Namakal, TamilNadu, India
Correspondence: [*] Corresponding author. Arun Ranganathan, Department of CSE, Builders Engineering College, Kangayam, TamilNadu, India. E-mail: [email protected].
Abstract: In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.
Keywords: Wireless Sensor Network (WSN), cluster head (CH), Distributed Entropy Energy-Efficient Clustering (DEEEC), distributed, heterogeneous, Chaotic Firefly Algorithm (CFA), clustering, and energy consumption
DOI: 10.3233/JIFS-189135
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8139-8147, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]