Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Decision Making Using Intelligent and Fuzzy Techniques
Guest editors: Cengiz Kahraman
Article type: Research Article
Authors: Tekin, Ahmet Tezcan*; | Çebi, Ferhan
Affiliations: Istanbul Technical University Management Engineering Department, Besiktas, Istanbul, Turkey
Correspondence: [*] Corresponding author. Ahmet Tezcan Tekin, Istanbul Technical University Management Engineering Department, Besiktas, Istanbul, Turkey. E-mail: [email protected].
Abstract: Within the most productive route, online travel agencies (OTAs) intend to use advanced digital media ads to expand their piece of the industry as a whole. The metasearch engine platforms are among the most consistently used digital media environments by OTAs. Most OTAs offer day by day deals in metasearch engine platforms that are paying per click for each hotel to get reservations. The administration of offering methodologies is critical along these lines to reduce costs and increase revenue for online travel agencies. In this study, we tried to predict both the number of impressions and the regular Click-Through-Rate (CTR) level of hotel advertising for each hotel and the daily sales amount. A significant commitment of our research is to use an extended dataset generated by integrating the most informative features implemented in various related studies as the rolling average for a different amount of day and shifted values for use in the proposed test stage for CTR, impression and sales prediction. The data is created in this study by one of Turkey’s largest OTA, and we are giving OTA’s a genuine application. The results at each prediction stage show that enriching the training data with the OTA-specific additional features, which are the most insightful and sliding window techniques, improves the prediction models ’ generalization capability, and tree-based boosting algorithms carry out the greatest results on this problem. Clustering the dataset according to its specifications also improves the results of the predictions.
Keywords: CTR prediction, impression prediction, sales prediction, data enrichment, clustering, fuzzy clustering
DOI: 10.3233/JIFS-189123
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6619-6627, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]