Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Decision Making Using Intelligent and Fuzzy Techniques
Guest editors: Cengiz Kahraman
Article type: Research Article
Authors: Yigit, Ahmet Talha; * | Samak, Baris; * | Kaya, Tolga
Affiliations: Department of Management Engineering, Istanbul Technical University, Istanbul, Turkey
Correspondence: [*] Corresponding author. Ahmet Talha Yigit and Baris Samak, Department of Management Engineering, Istanbul Technical University, 34367, Istanbul, Turkey. E-mails: [email protected] (Ahmet Talha Yigit) and [email protected] (Baris Samak).
Abstract: Sports analytics is a field that is growing in popularity and application throughout the world. One of the open problems in this field is the valuation of football players. The aim of this study is to establish a football player value assessment model using machine learning techniques to support the transfer decisions of football clubs. The proposed model is mainly based on the intrinsic features of the individual players which are provided in Football Manager simulation game. To do this, based on the individual statistics of 5316 players who are active in 11 different major leagues from Europe and South America, different value assessment models are conducted using advanced supervised learning techniques which include ridge and lasso regressions, random forests and extreme gradient boosting. All the models have been built in R programming language. The performances of the models are compared based on their mean squared errors and their fit to the real world examples. An ensemble model with inflation is proposed as the output.
Keywords: Football analytics, machine learning, ensemble learning, extreme gradient boosting, lasso regression
DOI: 10.3233/JIFS-189098
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6303-6314, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]