Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Computational Human Performance Modelling for Human-in-the-Loop Machine Systems
Guest editors: Hoshang Kolivand, Valentina E. Balas, Anand Paul and Varatharajan Ramachandran
Article type: Research Article
Affiliations: Business College, Xi’an International University, Shaanxi, China
Correspondence: [*] Corresponding author. Lei Ning, Business College, Xi’an International University, Shaanxi, 710077, China. E-mail: [email protected].
Abstract: The huge amount of digital image data in e-commerce transactions brings serious problems to the rapid retrieval and storage of images. Image hashing technology can convert image data of arbitrary resolution into a binary code sequence of tens or hundreds of bits through a hash function. In view of this, based on the image content characteristics, this study improved the traditional hash function and proposed a hash method based on bilateral random projection. At the same time, the projection vectors are acquired in the low-rank sparse decomposition process of the image data matrix, and the projection vectors are group orthogonalized. In addition, this study designed contrast test to carry out research and analysis on the effectiveness of the algorithm. The results show that the proposed algorithm works well and can be applied to practice and can provide theoretical reference for subsequent related research.
Keywords: Image features, feature retrieval, e-commerce, product trading, customer management
DOI: 10.3233/JIFS-189069
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5953-5964, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]