Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent Algorithms for Complex Information Services - Recent Advances and Future Trends
Guest editors: Andino Maseleno, Xiaohui Yuan and Valentina E. Balas
Article type: Research Article
Authors: Zhang, Xiaoxiana; b | Zhang, Jianpeia; * | Yang, Jinga
Affiliations: [a] College of Computer Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, China | [b] School of Computer Technology and Engineering, Changchun Institute of Technology, Changchun, Jilin, China
Correspondence: [*] Corresponding author. Jianpei Zhang, College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, Heilongjiang, China. E-mail: [email protected].
Abstract: The problems caused by network dimension disasters and computational complexity have become an important issue to be solved in the field of social network research. The existing methods for network feature learning are mostly based on static and small-scale assumptions, and there is no modified learning for the unique attributes of social networks. Therefore, existing learning methods cannot adapt to the dynamic and large-scale of current social networks. Even super large scale and other features. This paper mainly studies the feature representation learning of large-scale dynamic social network structure. In this paper, the positive and negative damping sampling of network nodes in different classes is carried out, and the dynamic feature learning method for newly added nodes is constructed, which makes the model feasible for the extraction of structural features of large-scale social networks in the process of dynamic change. The obtained node feature representation has better dynamic robustness. By selecting the real datasets of three large-scale dynamic social networks and the experiments of dynamic link prediction in social networks, it is found that DNPS has achieved a large performance improvement over the benchmark model in terms of prediction accuracy and time efficiency. When the α value is around 0.7, the model effect is optimal.
Keywords: Feature learning, social network, representation learning, neural network
DOI: 10.3233/JIFS-189010
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5253-5262, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]