Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Selected papers of LKE 2019
Guest editors: David Pinto, Vivek Singh and Fernando Perez
Article type: Research Article
Authors: Ángel García-Calderón, Miguel*; | García-Hernndez, RenArnulfo*; | Ledeneva, Yulia
Affiliations: Autonomous University of the State of Mexico, Literary Institute 100, Toluca 50000, Mexico
Correspondence: [*] Corresponding author. René Arnulfo García-Hernández, Autonomous University of the State of Mexico, Instituto Literario #100, Col. Centro, Toluca 50000, State of Mexico. E-mail: [email protected].
Abstract: There is a lot of cultural heritage information in historical documents that have not been explored or exploited yet. Lower-Baseline Localization (LBL) is the first step in information retrieval from images of manuscripts where groups of handwritten text lines representing a message are identified. An LBL method is described depending on how the features of the writing style of an author are treated: the character shape and size, gap between characters and between lines, the shape of ascendant and descendant strokes, character body, space between characters, words and columns, and touching and overlapping lines. For example, most of the supervised LBL methods only analyze the gap between characters as part of the preprocessing phase of the document and the rest of features of the writing style of the author are left for the learning phase of the classifier. For such reason, supervised LBL methods tend to learn particular styles and collections. This paper presents an unsupervised LBL method that explicit analyses all the features of the writing style of the author and processes the document by windows. In this sense, the proposed method is more independent from the writing style of the author, and it is more reliable with new collections in real scenarios. According to the experimentation, the proposed method surpasses the state-of-the-art methods with the standard READ-BAD historical collection with 2,036 manuscripts and 132,124 manually annotated baselines from 9 libraries in 500 years.
Keywords: Lower-baseline localization, historical document analysis, text line segmentation, writing style features
DOI: 10.3233/JIFS-179910
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 2, pp. 2509-2520, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]