Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Selected papers of LKE 2019
Guest editors: David Pinto, Vivek Singh and Fernando Perez
Article type: Research Article
Authors: Neri-Mendoza, Verónica | Ledeneva, Yulia*; | García-Hernández, René Arnulfo
Affiliations: Autonomous University of the State of Mexico, Instituto Literario, Toluca, State of Mexico, Mexico
Correspondence: [*] Corresponding author. Yulia Ledeneva, Autonomous University of the State of Mexico, Instituto Literario, #100, Toluca, 50000, State of Mexico, Mexico. E-mail: [email protected].
Abstract: The task of Extractive Multi-Document Text Summarization (EMDTS) aims at building a short summary with essential information from a collection of documents. In this paper, we propose an EMDTS method using a Genetic Algorithm (GA). The fitness function considering two unsupervised text features: sentence position and coverage. We propose the binary coding representation, selection, crossover, and mutation operators. We test the proposed method on the DUC01 and DUC02 data set, four different tasks (summary lengths 200 and 400 words), for each of the collections of documents (in total, 876 documents) are tested. Besides, we analyze the most frequently used methodologies to summarization. Moreover, different heuristics such as topline, baseline, baseline-random, and lead baseline are calculated. In the results, the proposed method achieves to improve the state-of-art results.
Keywords: Genetic algorithm, heuristics, unsupervised, extractive multi-document text, summarization
DOI: 10.3233/JIFS-179900
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 2, pp. 2397-2408, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]