Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Selected papers of LKE 2019
Guest editors: David Pinto, Vivek Singh and Fernando Perez
Article type: Research Article
Authors: Ashraf, Muhammad Adnana; * | Nawab, Rao Muhammad Adeelb | Nie, Feipinga
Affiliations: [a] Northwestern Polytechnical University, Xi’an, China | [b] COMSATS University Islamabad, Lahore Campus, Pakistan
Correspondence: [*] Corresponding author. Muhammad Adnan Ashraf, Northwestern Polytechnical University, Xi’an, China. E-mail: [email protected].
Abstract: The task of author profiling aims to distinguish the author’s profile traits from a given content. It has got potential applications in marketing, forensic analysis, fake profile detection, etc. In recent years, the usage of bi-lingual text has raised due to the global reach of social media tools as people prefer to use language that expresses their true feelings during online conversations and assessments. It has likewise impacted the use of bi-lingual (English and Roman-Urdu) text in the sub-continent (Pakistan, India, and Bangladesh) over social media. To develop and evaluate methods for bi-lingual author profiling, benchmark corpora are needed. The majority of previous efforts have focused on developing mono-lingual author profiling corpora for English and other languages. To fulfill this gap, this study aims to explore the problem of author profiling on bi-lingual data and presents a benchmark corpus of bi-lingual (English and Roman-Urdu) tweets. Our proposed corpus contains 339 author profiles and each profile is annotated with six different traits including age, gender, education level, province, language, and political party. As a secondary contribution, a range of deep learning methods, CNN, LSTM, Bi-LSTM, and GRU, are applied and compared on the three different bi-lingual corpora for age and gender identification, including our proposed corpus. Our extensive experimentation showed that the best results for both gender identification task (Accuracy = 0.882, F1-Measure = 0.839) and age identification (Accuracy = 0.735, F1-Measure = 0.739) are obtained using Bi-LSTM deep learning method. Our proposed bi-lingual tweets corpus is free and publicly available for research purposes.
Keywords: Twitter, author profiling, roman-urdu, deep learning, bi-lingual, gender identification
DOI: 10.3233/JIFS-179898
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 2, pp. 2379-2389, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]