Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Selected papers of LKE 2019
Guest editors: David Pinto, Vivek Singh and Fernando Perez
Article type: Research Article
Authors: Pinto, Davida; * | Priego, Belémb
Affiliations: [a] Faculty of Computer Science, Benemérita Universidad Autónoma de Puebla, PUE, Mexico | [b] Department of Systems, Universidad Autónoma Metropolitana Unidad Azcapotzalco, CDMX, Mexico
Correspondence: [*] Corresponding author. David Pinto, Faculty of Computer Science, Benemérita Universidad Autónoma de Puebla, 4 Sur 104, Col. Centro, C.P. 72000, PUE, Mexico. E-mail: [email protected].
Abstract: Automatic validation of compositionality vs non-compositionality is a very challenging problem in NLP. A very small number of papers in literature report results in this particular problem. Recently, some new approaches have arised with respect to this particular linguistic task. One of these approaches that have called our attention is based on what authors call “lexical domain”. In this paper, we analyze the use of Pointwise Mutual Information for constructing thesauri on the fly, which can be further employed instead of dictionaries for determining whether or not a given phraseological unit is compositional or not. The experimental results carried out in this paper show that this dissimilarity measure (PMI), can effectively be used when determining compositionality of a given verbal phraseological unit. Moreover, we show that the use of thesauri improves the results obtained in comparison with those experiments employing dictionaries, highlighting the use of self-constructed lexical resources which are, in fact, taking advantage of the same vocabulary of the target dataset.
Keywords: Multiword expression, compositionality, pointwise mutual information, thesaurus
DOI: 10.3233/JIFS-179872
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 2, pp. 2061-2070, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]