Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Information Sciences and Data Transmission of Data
Guest editors: Juan Luis García Guirao
Article type: Research Article
Authors: Zhang, Deping; * | Sun, Liangbo | Yang, Xuejin | Wang, Beihai | Wang, Luan
Affiliations: School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
Correspondence: [*] Corresponding author. Deping Zhang, School of Mechanical Engineering, Wuhan Polytechnic University, 430048, Wuhan, China. E-mail: [email protected].
Abstract: The existing control method of wheel slip rate has a long braking time, the gap between the slip rate and the optimal slip rate is obvious, and there is a defect of poor control effect. In order to solve the above problems, the fuzzy algorithm is introduced to design the wheel slip control method. According to the characteristics of ESC system, the control model of wheel slip rate was built. On this basis, the least square optimization algorithm was used to estimate the best slip rate. Based on the estimated optimal slip rate, the multi-agent system was used to design the slip rate controller, and thus to get the threshold value of slip rate controller. Moreover, the fuzzy algorithm was used to optimize the parameters of slip rate controller, so as to keep the optimal slip ratio. Finally, the control for wheel slip ratio based on fuzzy algorithm was achieved. The simulation results show that the slip ratio of this method is kept between 0.18–0.45, which is less different from the optimal slip ratio. Compared with the existing control method of wheel slip ratio, the proposed control method of wheel slip ratio greatly improves the control effect, which fully shows that the proposed control method of wheel slip ratio has better performance.
Keywords: ESC system, least square optimization algorithm, controller, optimal slip rate
DOI: 10.3233/JIFS-179856
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 6, pp. 7865-7874, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]