Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Intelligent data analysis and applications & smart vehicular technology, communications and applications
Guest editors: Valentina Emilia Balas and Lakhmi C. Jain
Article type: Research Article
Authors: Shakir, Hinaa; * | Rasheed, Haroona | Rasool Khan, Tariq Mairajb
Affiliations: [a] Department of Electrical Engineering, Bahria University, Karachi, Pakistan | [b] Department of Electrical and Power Engineering, PNEC, National University of Science and Technology, Pakistan
Correspondence: [*] Corresponding author. Hina Shakir, Department of Electrical Engineering, Bahria University, Karachi, Pakistan. E-mail: [email protected].
Abstract: Machine learning methods with quantitative imaging features integration have recently gained a lot of attention for lung nodule classification. However, there is a dearth of studies in the literature on effective features ranking methods for classification purpose. Moreover, optimal number of features required for the classification task also needs to be evaluated. In this study, we investigate the impact of supervised and unsupervised feature selection techniques on machine learning methods for nodule classification in Computed Tomography (CT) images. The research work explores the classification performance of Naive Bayes and Support Vector Machine(SVM) when trained with 2, 4, 8, 12, 16 and 20 highly ranked features from supervised and unsupervised ranking approaches. The best classification results were achieved using SVM trained with 8 radiomic features selected from supervised feature ranking methods and the accuracy was 100%. The study further revealed that very good nodule classification can be achieved by training any of the SVM or Naive Bayes with a fewer radiomic features. A periodic increment in the number of radiomic features from 2 to 20 did not improve the classification results whether the selection was made using supervised or unsupervised ranking approaches.
Keywords: Quantitative imaging features, radiomic features, nodule classification, machine learning, feature selection algorithms
DOI: 10.3233/JIFS-179672
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5847-5855, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]