Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Collective intelligence in information systems
Guest editors: Ngoc Thanh Nguyen, Edward Szczerbicki, Bogdan Trawiński and Van Du Nguyen
Article type: Research Article
Authors: Kurowski, Adam | Mrozik, Katarzyna | Kostek, Bozena; * | Czyzewski, Andrzej
Affiliations: Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Audio Acoustics Laboratory, Gdansk, Poland
Correspondence: [*] Corresponding author. Bozena Kostek, Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Audio Acoustics Laboratory, G. Narutowicza 11/12, 80-233 Gdansk, Poland. E-mail: [email protected].
Abstract: In this paper, a methodology for automatic brain activity class identification of EEG (electroencephalographic) signals is presented. EEG signals are gathered from seventeen subjects performing one of the three tasks: resting, watching a music video and playing a simple logic game. The methodology applied consists of several steps, namely: signal acquisition, signal processing utilizing z-score normalization, parametrization and activity classification. The EEG signal is acquired from a headset containing 14 electrodes. For the parametrization two methods are used, namely, Discrete Wavelet Transform (DWT) employed as a reference parametrization technique and autoencoder neural network. Parameters obtained with those methods are fed to the input of classifiers which assigned them to one of three activity classes. Then, the effectiveness of the assignment of the frames of EEG data into appropriate classes is observed and compared. Results obtained using both methods show differences in accuracy with regard to the task detected depending on factors such as type of parametrization or complexity of the classifier employed for EEG activity classification.
Keywords: EEG signal, discrete wavelet transform (DWT), autoencoder, EEG signal classification
DOI: 10.3233/JIFS-179360
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 6, pp. 7537-7543, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]