Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Collective intelligence in information systems
Guest editors: Ngoc Thanh Nguyen, Edward Szczerbicki, Bogdan Trawiński and Van Du Nguyen
Article type: Research Article
Authors: Phan, Huyen Tranga | Nguyen, Ngoc Thanhb; d | Tran, Van Cuongc | Hwang, Dosama; *
Affiliations: [a] Department of Computer Engineering, Yeungnam University, Gyeongsan, Republic of Korea | [b] Faculty of Computer Science and Management, Wroclaw University of Science and Technology, Wroclaw, Poland | [c] Faculty of Engineering and Information Technology, Quang Binh University, Dong Hoi, Vietnam | [d] Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh city, Vietnam
Correspondence: [*] Corresponding author. Dosam Hwang, Department of Computer Engineering, Yeungnam University, Gyeongsan, Republic of Korea. E-mail: [email protected].
Abstract: Sentiment analysis has been gaining importance in many applications such as recommendation systems, the decision making support and prediction models. Sentiment analysis helps to understand and evaluate public opinion regarding social events, product services, and political trends, especially the feelings expressed through comments by users in social networks such as Twitter, Facebook, and Instagram. There have been a lot of research attempts to address the tweets sentiment analysis problem with high accuracy, particularly in case of tweets that express a single sentiment towards a single object. However, the results of the classification are not highly accurate in cases such as the following: a user expresses multiple sentiments towards a single object in a tweet; a user presents multiple sentiments towards multiple objects; and a user indicates a single sentiment towards multiple objects. Furthermore, the previous studies only analyze the sentiment of each tweet without considering the objects and the sentiment towards each object from an entire set of tweets. This study attempts to deal with the limitations of the previous methods; an approach is proposed herein, based on integrating the sentiment towards a particular object from all tweets related to that object. The proposed method focuses on determining the objects and indicating the sentiment towards the specific objects by combining the sentiments related to each object from the entire set of tweets. On experimental evaluation, the proposed method is observed to have achieved a fairly good result in terms of the error ratio and achieved information.
Keywords: Sentiment-analysis, sentiment-integration, object-determination
DOI: 10.3233/JIFS-179336
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 6, pp. 7251-7263, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]