Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent, Smart and Scalable Cyber-Physical Systems
Guest editors: V. Vijayakumar, V. Subramaniyaswamy, Jemal Abawajy and Longzhi Yang
Article type: Research Article
Authors: Balaji, A. Jayanth*; | Harish Ram, D.S. | Nair, Binoy B.
Affiliations: Department of Electronics and Communication Engineering, SIERS Research Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
Correspondence: [*] Corresponding author. A. Jayanth Balaji, Department of Electronics and Communication Engineering, SIERS Research Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India. E-mail: [email protected].
Abstract: Automated metering Infrastructure (AMI) is an integral part of a smart grid. Employing the data collected by the AMI from the consumers to generate accurate electricity consumption forecasts can help the utility in significantly improving the quality of service delivered to the consumer. Design and empirical validation of machine learning based electric energy consumption forecasting systems, is presented in the present study. Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Extreme Learning Machines (ELM) based models are designed and evaluated. One of the major aspects of the work is that the proposed consumption forecasting systems are designed as generalized models, i.e. one single model can be used to generate forecasts for any of the consumers considered, as opposed to the conventional technique of generating a separate model for each consumer. The forecasting systems are designed to generate half-hour-ahead and two-hour-ahead electric energy consumption forecasts. The proposed systems are validated on data for 485 Small and Medium Enterprise (SME) consumers in the CER electric energy consumption dataset. Results indicate that the models proposed in the present study result in good consumption forecast accuracy are hence, well suited for generating electric energy consumption forecast models.
Keywords: CNN, electric energy consumption forecast, ELM, GRU, LSTM, machine learning
DOI: 10.3233/JIFS-169965
Journal: Journal of Intelligent & Fuzzy Systems, vol. 36, no. 5, pp. 4049-4055, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]