Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent advancements in computer, communication and computational sciences
Guest editors: K.K. Mishra
Article type: Research Article
Authors: Sehgal, Pritia | Goel, Nidhib; *
Affiliations: [a] Keshav Mahavidyalaya, University of Delhi, Bharat (India) | [b] Department of computer science, University of Delhi, Bharat (India)
Correspondence: [*] Corresponding author. Nidhi Goel, Department of computer science, University of Delhi, Bharat, India. Tel./Fax: +91 9953803900; E-mail: [email protected].
Abstract: Non-destructive techniques such as hyperspectral imaging, backscattering imaging are the advanced techniques used for predicting mechanical properties of horticulture products. They show relatively good performance but at the expense of costly measuring setups. This application-oriented paper investigates the feasibility of employing simple digital color camera imaging for prediction and fuzzy classification of firmness of tomatoes. Images acquired using digital color camera are preprocessed and subject to texture analysis in order to extract the number of features. The proposed approach exploits four texture feature extraction algorithms: three are based on statistical techniques viz. first order statistics (FOS), gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), and one is based on transform-based technique viz. wavelet-transform. Out of all extracted features, redundant features are eliminated using various attribute selection methods. Subsequently, prediction models are built and analyzed using regression analysis. Sample space has been split into two sets; 80% training and 20% testing data having tomatoes with almost identical formation. Experimental results illustrates that RBF regression gave the lowest RMSE of 0.174 and highest prediction correlation coefficient of 0.929 for wavelet feature set. Grounded on the prediction model, fuzzy rule based classification (FRBC) is proposed to classify tomatoes into three firmness categories soft, medium, and hard. Accuracy statistics of the proposed FRBCS are compared with the state-of-the-art result and highest classification accuracy of 92.68% is achieved by proposed FRBCS. The results exhibit the possibility of using a digital color imaging system for firmness estimation and further for classification.
Keywords: Image texture analysis, Tomato firmness, fuzzy rule based classification system, RBF regression, machinevision
DOI: 10.3233/JIFS-169299
Journal: Journal of Intelligent & Fuzzy Systems, vol. 32, no. 5, pp. 3641-3653, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]