Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft computing and intelligent systems: Tools, techniques and applications
Guest editors: Sabu M. Thampi and El-Sayed M. El-Alfy
Article type: Research Article
Authors: Kaur, Arshvir* | Sood, Nitakshi | Aggarwal, Naveen | Vij, Dinesh | Sachdeva, Bhavdeep
Affiliations: UIET, Panjab University, Chandigarh, India
Correspondence: [*] Corresponding author. Arshvir Kaur, UIET, Panjab University, Chandigarh, India. Tel.: +91 9814865455; Fax: +91 1722534995; E-mail: [email protected].
Abstract: Traffic congestion occurs when the number of the vehicles increases more than the existing space of the road. This deleterious problem is increasing at an alarming rate in the whole world. For any effective Intelligent Transportation System, early detection of traffic congestion is very important to take corrective action. Several techniques have been developed to detect traffic congestion, most of which are infrastructure based. Even though these techniques are widely used, but they have many downsides as well. They require large capital input for installation as well as for maintenance. In this paper, we propose an efficient and cost-effective method using smartphones to determine the traffic state of the road. The acoustic data collected from commuter’s smartphone is segmented into fixed size frames. Various time and frequency based features such as (MFCC, Delta & Delta-Delta, ZCR, STE, and RMS) are extracted from each frame and used for detecting traffic state as ’busy street’ or ’quiet street’. We have compared the accuracy of two classifiers Support Vector Machines and Neural Network by using acoustic data collected from 320 different recording sessions. Experiments have shown that feature set having features MFCC, STE and RMS, results in better classification accuracy of 91.8% with Neural Network and 93% with SVM. Furthermore, various relevant factors affecting the classification accuracy are also tested like frame size, window functions, overlapping size and different combination of features. The frame size of 8192 and hamming window function proved to be more efficient than others.
Keywords: Acoustic signal, traffic state, temporal features, spectral features, support vector machine, Neural Network
DOI: 10.3233/JIFS-169259
Journal: Journal of Intelligent & Fuzzy Systems, vol. 32, no. 4, pp. 3159-3166, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]