Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft computing and intelligent systems: Tools, techniques and applications
Guest editors: Sabu M. Thampi and El-Sayed M. El-Alfy
Article type: Research Article
Authors: Malik, Hasmat* | Sharma, Rajneesh
Affiliations: Division of Instrumentation and Control Engineering, Netaji Subhas Institute of Technology, New Delhi, India
Correspondence: [*] Corresponding author. H. Malik, Division of Instrumentation and Control Engineering, Netaji Subhas Institute of Technology, Room No. 103, Block-6, ICE Division, NSIT Campus, Dwarka Sector-3, New Delhi 110078, India. Tel.: +91 11 25000209; Mobile: +919555011097; Fax +91 11 25099022; E-mail: [email protected].
Abstract: In the presented work, an intelligent model for fault classification of a transmission line is proposed. Ten different types of faults (LAG, LBG, LCG, LABG, LBCG, LCAG, LAB, LBC, LCA and LABC) have been considered along with one healthy condition on a simulated transmission line system. Post fault current signatures have been used for feature extraction for further study. Empirical Mode Decomposition (EMD) method is used to decompose post fault current signals into Intrinsic Mode Functions (IMFs). These IMFs are used as input variables to an artificial neural network (ANN) based intelligent fault classification model. Relief Attribute Evaluator with Ranker search method is used to select the most relevant input variables for fault classification of a three-phase transmission line. Proposed approach is able to select most relevant input variables and gives better result than other combinations. Ours is a first attempt at using EMD for feature selection in fault classification of transmission lines.
Keywords: Empirical mode decomposition, artificial neural network, transmission line, fault diagnosis, feature selection
DOI: 10.3233/JIFS-169247
Journal: Journal of Intelligent & Fuzzy Systems, vol. 32, no. 4, pp. 3043-3050, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]