Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: ICNC-FSKD 2015
Guest editors: Zheng Xiao and Kenli Li
Article type: Research Article
Authors: Luo, Jiawei* | Lin, Dingyu | Cao, Buwen
Affiliations: College of Computer Science and Electronic Engineering & Collaboration and Innovation Center for Digital Chinese Medicine of 2011 Project of Colleges and Universities, Hunan University, Changsha, China
Correspondence: [*] Corresponding author. Jiawei Luo, College of Computer Science and Electronic Engineering & Collaboration and Innovation Center for Digital Chinese Medicine of 2011 Project of Colleges and Universities, Hunan University, Changsha 410082, China. E-mail: [email protected].
Abstract: With the increasing of available protein-protein interaction (PPI) data, many computational methods have been explored to identify protein complexes from PPI networks. Majority of algorithms employ the feature of local neighbors to detect local dense subgraphs which correspond to protein complexes. Those approaches neglect the inherent core-attachment structure of protein complexes, which to an extent affect the protein complexes of prediction accuracy. In this paper, we propose a new algorithm for predicting protein complexes, deriving from the framework of the core-attachment. The proposed method first obtains the triangular structures of the core of protein complexes, name as cells, in which the edge-clustering coefficient is used. And then the cells are expanded to protein complex cores based on the closeness. Finally, the attachments are added to their corresponding cores to form the final protein complexes. The experimental results on two yeast PPI data show our method outperform the existing algorithms in terms of matched protein complexes and biological significance using two benchmark data sets.
Keywords: Core-attachment, protein complex, protein-protein interaction, triangular structure
DOI: 10.3233/JIFS-169026
Journal: Journal of Intelligent & Fuzzy Systems, vol. 31, no. 2, pp. 967-978, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]