Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: ICNC-FSKD 2015
Guest editors: Zheng Xiao and Kenli Li
Article type: Research Article
Authors: Xiang, Zhiyanga; b | Xiao, Zhua; b | Wang, Donga; * | Georges, Hassana Maigarya
Affiliations: [a] College of Computer Science and Electronics Engineering, Hunan University, Changsha, China | [b] State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, China
Correspondence: [*] Corresponding author. Dong Wang, College of Computer Science and Electronics Engineering, Hunan University, Changsha, China. Tel.: +86 13808451678; E-mail: [email protected].
Abstract: The semi-supervised learning (SSL) problems are often solved by graph based algorithms, semi-definite programmings etc. These methods always require high space complexities, and thus are not efficient for network intrusion detection systems. Apart from the space complexity challenge, a network intrusion detection system should be able to handle the distribution drifting of data flow as well. A common solution for this concept drift problem is by SSL. In this paper, an incremental SSL training framework is proposed to combine the low space complexity advantage of topology learning and SSL for network intrusion detection. First, the unsupervised self-organizing incremental neural network is extended to process labeled and unlabeled information incrementally. Second, a kernel function is constructed from the training results of the previous step. Finally, a kernel machine is trained with the constructed kernel function. The proposed method reduces the space complexity of SSL to the magnitude similar to supervised learning. The experiments are carried out on the NSL-KDD datasets, and the results show that the proposed method outperforms the mainstream methods such as Transductive Support Vector Machine and Label Propagation.
Keywords: Metric learning, nonlinear embedding, self-organizing incremental neural network, semi-supervised learning
DOI: 10.3233/JIFS-169013
Journal: Journal of Intelligent & Fuzzy Systems, vol. 31, no. 2, pp. 815-823, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]