Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Haviez, Laura | Toscano, Rosario | El Youssef, Mohamad | Fouvry, Siegfried | Yantio, Ghislain | Moreau, Gilles
Affiliations: Université de Lyon, Laboratoire de Tribologie et de Dynamique des Systèmes CNRS UMR5513 ECL, 36 avenue Guy de Collongue, Ecully, France | Université de Lyon, Laboratoire de Tribologie et de Dynamique des Systèmes CNRS UMR5513 ECL/ENISE, 58 rue Jean Parot Saint-Etienne, France | SAGEM Défense Sécurité, BP 72, 72-74 rue de la Tour Billy Argenteuil, France
Note: [] Corresponding author. Rosario Toscano, Université de Lyon, Laboratoire de Tribologie et de Dynamique des Systèmes CNRS UMR5513 ECL/ENISE, 58 rue Jean Parot 42023 Saint-Etienne cedex 2, France. E-mail: [email protected]
Abstract: In this paper it is shown that we can estimate the fretting wear evolution via an artificial neural network (ANN) model without making use of the back-propagation learning algorithm and without using any regularization method. This can be done by integrating in the ANN model all the available knowledge about the wear mechanism. This kind of model is referred to as a semi-physical neural model. One of the main advantages in building a semi-physical neural model is that its number of parameters is reduced compared with a standard ANN model. This is a very favourable property against the over-fitting inconvenience. In addition, via appropriate nonlinear transformations, the semi-physical neural model can be rendered linear with respect to the parameters that are to be determined. Consequently, a simple least square approximation can be used to determine the unknown parameters.
Keywords: Fretting Wear Estimation, Neural Network, Semi-Physical Neural Model
DOI: 10.3233/IFS-141461
Journal: Journal of Intelligent & Fuzzy Systems, vol. 28, no. 4, pp. 1745-1753, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]