Abstract: The present study investigates the temperature dependence of electrotonic potentials in mathematically-simulated myelinated axons with one of three increasingly-severe type of amyotrophic lateral sclerosis (ALS) pathology, termed as ALS1, ALS2 and ALS3, respectively, in the physiological range (30–37∘C). These potentials were elicited by long-lasting (100 ms) subthreshold polarizing current stimuli (±40% of the threshold). Numerical solutions were computed using our temperature-dependent multi-layered model. The results showed the following trends: (i) in ALS1, polarizing electrotonic potentials were normal; (ii) in ALS2 and ALS3, action potentials were elicited in the early parts of the depolarizing electrotonic potentials, and (iii) in ALS3, spontaneous discharges were elicited after the termination of applied hyperpolarizing stimuli (i.e., post-anodal excitation). The ionic currents underlying electrotonic potentials in the ALS1 case were attributable to the activation of potassium fast (Kf+) and slow (Ks+) channels in the nodal and internodal axolemma beneath the myelin sheath. By contrast, in ALS2 and ALS3, the depolarizing stimuli activated the classical “transient” Na+ channels in the nodal and internodal axolemma beneath the myelin sheath eliciting action potential generation. These results obtained were closer to those observed in hypothermia (⩽25∘C) than in hyperthermia (⩾40∘C).
Keywords: Temperature, physiological temperature range, myelinated axons, ALS, electrotonic potentials, current kinetics of polarizing electrotonic potentials, computational neuroscience