Affiliations: Department of Environmental Science, Chongqing University, Campus A, Chongqing 400044, China | Key Laboratory for the Southwest China Resources Exploitation and Environmental Disaster Control Engineering, Ministry of Education, China
Abstract: The integration of methanogenesis with denitrification and anaerobic ammonium oxidation (ANAMMOX) was studied in an expanded granular sludge bed (EGSB) reactor in this work. Experimental results from the continuous treatment of wastewater with nitrite and ammonium, which lasted for 107 days, demonstrated that wastewater with high nitrite and ammonium could be anaerobically treated in an expanded granular sludge bed reactor. More than 91% to 97% of COD were removed at up to about 3.9 g COD/(L·d) of COD volumetric loading rate. More than 97% to 100% of nitrite was denitrified at up to about 0.8 g NO_{2}^{−}N/(L·d), which is 16 times higher than that in a conventional activated sludge system with nitrification/denitrification (0.05 gN/(L·d). No dissimilatory reduction of nitrite to ammonium occurred in the process. However, maximum of about 40% ammonium was found to be lost. Batch tests of 15 days with sludge from the reactor showed that 100% of nitrite was denitrified completely, and about 3% of ammonium was removed when only ammonium (34.3 mg/L) and nitrite (34.3 mg/L) were added into the sludge suspension medium. Furthermore, about 15% of ammonium amounts were lost with organic COD addition. It suggested that the methanogenesis in the system could enhance ANAMMOX because of intermediate hydrogen produced during methanogenesis.