Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dalla Preda, Mila | Giacobazzi, Roberto
Affiliations: Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy. E-mails: [email protected], [email protected]
Abstract: In recent years code obfuscation has attracted research interest as a promising technique for protecting secret properties of programs. The basic idea of code obfuscation is to transform programs in order to hide their sensitive information while preserving their functionality. One of the major drawbacks of code obfuscation is the lack of a rigorous theoretical framework that makes it difficult to formally analyze and certify the effectiveness of obfuscating techniques. We face this problem by providing a formal framework for code obfuscation based on abstract interpretation and program semantics. In particular, we show that what is hidden and what is preserved by an obfuscating transformation can be expressed as abstract interpretations of program semantics. Being able to specify what is masked and what is preserved by an obfuscation allows us to understand its potency, namely the amount of obscurity that the transformation adds to programs. In the proposed framework, obfuscation and attackers are modeled as approximations of program semantics and the lattice of abstract interpretations provides a formal tool for comparing obfuscations with respect to their potency. In particular, we prove that our framework provides an adequate setting to measure not only the potency of an obfuscation but also its resilience, i.e., the difficulty of undoing the obfuscation. We consider code obfuscation by opaque predicate insertion and we show how the degree of abstraction needed to disclose different opaque predicates allows us to compare their potency and resilience.
Keywords: Code obfuscation, abstract interpretation, program semantics, static program analysis
DOI: 10.3233/JCS-2009-0345
Journal: Journal of Computer Security, vol. 17, no. 6, pp. 855-908, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]