Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Stolfo, Salvatore J. | Apap, Frank | Eskin, Eleazar | Heller, Katherine | Hershkop, Shlomo | Honig, Andrew | Svore, Krysta
Affiliations: Department of Computer Science, Columbia University, New York, NY 10027, USA. E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
Abstract: We present a component anomaly detector for a host-based intrusion detection system (IDS) for Microsoft Windows. The core of the detector is a learning-based anomaly detection algorithm that detects attacks on a host machine by looking for anomalous accesses to the Windows Registry. We present and compare two anomaly detection algorithms for use in our IDS system and evaluate their performance. One algorithm called PAD, for Probabilistic Anomaly Detection, is based upon a probability density estimation while the second uses the Support Vector Machine framework. The key idea behind the detector is to first train a model of normal Registry behavior on a Windows host, even when noise may be present in the training data, and use this model to detect abnormal Registry accesses. At run-time the model is used to check each access to the Registry in real-time to determine whether or not the behavior is abnormal and possibly corresponds to an attack. The system is effective in detecting the actions of malicious software while maintaining a low rate of false alarms. We show that the probabilistic anomaly detection algorithm exhibits better performance in accuracy and in computational complexity over the support vector machine implementation under three different kernel functions.
DOI: 10.3233/JCS-2005-13403
Journal: Journal of Computer Security, vol. 13, no. 4, pp. 659-693, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]