Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yu, Jing | Guan, Rongqiang* | Zhang, Cungui | Shao, Fang
Affiliations: School of Electrical and Information Engineering, Jilin Engineering Normal University, Changchun, Jilin, China
Correspondence: [*] Corresponding author: Rongqiang Guan, School of Electrical and Information Engineering, Jilin Engineering Normal University, Changchun, Jilin 130062, China. E-mail: [email protected].
Abstract: During the long-term operation of the photovoltaic (PV) system, occlusion will reduce the solar radiation energy received by the PV module, as well as the photoelectric conversion efficiency and economy. However, the occlusion detection of the PV power station has the defects of low efficiency, poor accuracy, and untimely detection, which will cause unknown system losses. Based on the deep learning algorithm, this paper conducts research on PV module occlusion detection. In order to accurately obtain the occlusion area and position information of the PV panel, a PV module occlusion detection model based on the Segment-You Only Look Once (Seg-YOLO) algorithm is established. Based on the YOLOv5 algorithm, the loss function is modified, the Segment Head detection module is introduced, and the convolutional block attention module (CBAM) attention mechanism is added to achieve the accurate detection of small targets by the algorithm model and the fast detection of the PV module occlusion area identify. The model performance research is carried out on three types of occlusion datasets: leaf, bird dropping, and shadow. According to the experimental results, the proposed model has better recognition accuracy and speed than SSD, Faster-Rcnn, YOLOv4, and U-Net. The precision rate, recall rate, and recognition speed can reach 90.52%, 92.41%, and 92.3 FPS, respectively. This model can lay a theoretical foundation for the intelligent operation and maintenance of PV systems.
Keywords: PV, object recognition method, deep learning, energy efficiency
DOI: 10.3233/JCM-237108
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 23, no. 6, pp. 3391-3405, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]