Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zeng, Qiaoa; b
Affiliations: [a] School of Science and Technology, University of Sanya, Sanya, Hainan 572022, China | [b] Academician Chen Guoliang Team Innovation Center, University of Sanya, Sanya, Hainan 572022, China | E-mail: [email protected]
Correspondence: [*] Corresponding author: Academician Chen Guoliang Team Innovation Center, University of Sanya, Sanya, Hainan 572022, China. E-mail: [email protected].
Abstract: Sensors as the sensing end of intelligent control can be used to collect various data instead of human beings. In the context of technological development, the variety of sensors leads to multiple and structurally unequal data sources, and fusion of these data becomes a problem for consideration. The study constructs an intuitionistic fuzzy transformation method to handle data with various attributes with the help of fuzzy mathematical concepts, which characterizes the data based on the hesitancy and ideal solutions under Gaussian distribution. Simulations of classical classification data show that the intuitionistic fuzzy transformation method can effectively differentiate the affiliation of data points in the dataset, and the results of 800 simulations show that the qualitative accuracy of the algorithm can reach 89%, while the causes of abnormal data are explored and it is found that the attributes of the dataset based on Gaussian distribution are too close to each other as the cause of misclassification; the algorithm is also optimized from multi-dimensional considerations, and a An optimization operator based on the distance method of superior and inferior solutions was constructed and simulated for several optimization paths. The results show that the study uses an optimization scheme that is significantly better than the existing fuzzy operator, and 800 times can improve the accuracy rate up to 95.23%, which is 14.01% higher than that of a single attribute. This indicates that the intuitionistic fuzzy algorithm of this study has some rationality and is able to fuse the data of multiple attributes of the sensor for determination and provide the necessary basis for decision making.
Keywords: Fuzzy mathematics, multi-source heterogeneity, sensors, gaussian distribution
DOI: 10.3233/JCM-226796
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 23, no. 4, pp. 2165-2178, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]