Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Yongxin
Affiliations: School of Accountancy, Anyang Institute of Technology, Anyang, Henan 455000, China | E-mail: [email protected]
Correspondence: [*] Corresponding author: School of Accountancy, Anyang Institute of Technology, Anyang, Henan 455000, China. E-mail: [email protected].
Abstract: In the post-targeted poverty alleviation era, rural revitalization has become a common action of the whole society, strengthen the rural ecological environment governance, and the construction of beautiful countryside needs to be promoted urgently. Agricultural development, rural prosperity and farmers’ prosperity are inseparable from the support of a good ecological environment. From ecological, production, life and new energy four aspects of the rural ecological environment development evaluation index system, and then the principal component analysis screening important influence index, on the basis of the genetic algorithm and BP neural network improvement model, 31 provinces during much starker choices-and graver consequences-in rural ecological environment development, and the BP neural network and GA-BP neural network evaluation results. The results show that: (1) Generally speaking, during the 13th Five-Year Plan period, my country’s rural ecological environment development index has gradually improved, but the change range is small, the average value has risen from 0.2257 to 0.2431; The number of provinces with excellent development levels has risen from 5 to 7, and the development of rural ecological environment in Beijing, Tianjin and other provinces has risen to excellent; (2) The development of regional rural ecological environment has increased or decreased, and about three-quarters of the provinces have improved the development of rural ecological environment; (3) The development of rural ecological environment is uneven, and the difference gradually expands; (4) Compared with BP neural network, GA-BP neural network has fast convergence speed, small training, verification and overall errors, high fitting degree, and has a good evaluation effect. The research conclusions can provide a basis for the evaluation and improvement of rural ecological environment development.
Keywords: Rural ecological environment, principal component analysis, genetic algorithm, BP neural network, development evaluation
DOI: 10.3233/JCM-226786
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 23, no. 4, pp. 1869-1882, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]