Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shen, Yang
Affiliations: College of Information Engineering, Guangzhou Institute of Technology, Guangzhou, Guangdong 510075, China | E-mail: [email protected]
Correspondence: [*] Corresponding author: College of Information Engineering, Guangzhou Institute of Technology, Guangzhou, Guangdong 510075, China. E-mail: [email protected].
Abstract: Mechanical fault detection has an important influence on production schedule and efficiency. With the development of intelligent technology, more and more intelligent detection technologies are applied to mechanical fault detection. In order to detect mechanical faults more efficiently and accurately, this experiment proposes a production knowledge base model based on genetic algorithm (GA algorithm). The model uses the unique biological genetics principle of genetic algorithm to evolve the interested population, and can conduct spatial search to find the global optimal solution. By comparing the performance of GA algorithm model with other similar detection models, it is found that the model proposed in the experiment has obvious advantages in mechanical fault detection performance. The experimental results show that the maximum accuracy of the GA algorithm is 0.935, 0.074 higher than the support vector machine (SVM) model, 0.118 higher than the linear discriminant analysis (LDA) model, 0.032 higher than the random forest (RF) model, and 0.166 higher than the K nearest neighbor (KNN) model. In addition, the error value of GA algorithm is the lowest among these models, which is 0.028. This proves that the genetic algorithm model has higher diagnostic accuracy and can play an important role in mechanical fault detection.
Keywords: Detection model, genetic algorithm, mechanical fault, production knowledge base
DOI: 10.3233/JCM-226719
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 23, no. 3, pp. 1251-1263, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]