You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Context-based fall detection and activity recognition using inertial and location sensors

Abstract

Accidental falls are some of the most common sources of injury among the elderly. A fall is particularly critical when the elderly person is injured and cannot call for help. This problem is addressed by many fall-detection systems, but they often focus on isolated falls under restricted conditions, not paying enough attention to complex, real-life situations. To achieve robust performance in real life, a combination of body-worn inertial and location sensors for fall detection is studied in this paper. A novel context-based method that exploits the information from the both types of sensors is designed. It considers body accelerations, location and elementary activities to detect a fall. The recognition of the activities is of great importance and also is the most demanding of the three, thus it is treated as a separate task. The evaluation is performed on a real-life scenario, including fast falls, slow falls and fall-like situations that are difficult to distinguish from falls. All possible combinations of six inertial and four location sensors are tested. The results show that: (i) context-based reasoning significantly improves the performance; (ii) a combination of two types of sensors in a single physical sensor enclosure is the best practical solution.