Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kanso, Houssam; * | Noureddine, Adel | Exposito, Ernesto
Affiliations: Universite de Pau et des Pays de l’Adour, E2S UPPA, LIUPPA, Anglet, France
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Over the last fifty years, societies across the world have experienced multiple periods of energy insufficiency with the most recent one being the 2022 global energy crisis. In addition, the electric power industry has been experiencing a steady increase in electricity consumption since the second industrial revolution because of the widespread usage of electrical appliances and devices. Newer devices are equipped with sensors and actuators, they can collect a large amount of data that could help in power management. However, current energy management approaches are mostly applied to limited types of devices in specific domains and are difficult to implement in other scenarios. They fail when it comes to their level of autonomy, flexibility, and genericity. To address these shortcomings, we present, in this paper, an automated energy management approach for connected environments based on generating power estimation models, representing a formal description of energy-related knowledge, and using reinforcement learning (RL) techniques to accomplish energy-efficient actions. The architecture of this approach is based on three main components: power estimation models, knowledge base, and intelligence module. Furthermore, we develop algorithms that exploit knowledge from both the power estimator and the ontology, to generate the corresponding RL agent and environment. We also present different reward functions based on user preferences and power consumption. We illustrate our proposal in the smart home domain. An implementation of the approach is developed and two validation experiments are conducted. Both case studies are deployed in the context of smart homes: (a) a living room with a variety of devices and (b) a smart home with a heating system. The obtained results show that our approach performs well given the low convergence period, the high level of user preferences satisfaction, and the significant decrease in energy consumption.
Keywords: Energy management, smart home, contextual knowledge, artificial intelligence, automated model generation
DOI: 10.3233/AIS-220482
Journal: Journal of Ambient Intelligence and Smart Environments, vol. 16, no. 1, pp. 23-42, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]