Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Current Trends in Energy Management, Sustainability and Security for Intelligent Environments
Article type: Research Article
Authors: Ben Abdallah, Emnaa; * | Grati, Rimab | Boukadi, Khoulouda
Affiliations: [a] Miracl Laboratory, Faculty of Economics and Management, University of Sfax, Sfax, Tunisia | [b] Zayed University, Abu Dhabi, UAE
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Significant population growth and ongoing socioeconomic development have increased reliance on irrigated agriculture and agricultural intensification. However, accurately predicting crop water demand is problematic since it is affected by several factors such as weather, soil, and water properties. Many studies have shown that a hybrid irrigation system based on two irrigation strategies (i.e., evapotranspiration and soil-based irrigation) can provide a credible and reliable irrigation system. The latter can also alert farmers and other experts to phenomena such as noise, erroneous sensor signals, numerous correlated input and target variables, and incomplete or missing data, especially when the two irrigation strategies produce inconsistent results. Hence, we propose Multi-Target soil moisture and evapotranspiration prediction (MTR-SMET) for estimating soil moisture and evapotranspiration. These predictions are then used to compute water needs based on Food and Agriculture Organization (FAO) and soil-based methods. Besides, we propose an explainable MTR-SMET (xMTR-SMET) that explains the ML-based irrigation to the farmers/users using several explainable AI to provide simple visual explanations for the given predictions. It is the first attempt that explains and offers meaningful insights into the output of a machine learning-based irrigation approach. The conducted experiments showed that the proposed MTR-SMET model achieves low error rates (i.e., MSE = 0.00015, RMSE = 0.0039, MAE = 0.002) and high R2 score (i.e., 0.9676).
Keywords: Evapotranspiration, soil moisture, irrigation scheduling, Multi-Target Regression, XAI
DOI: 10.3233/AIS-220477
Journal: Journal of Ambient Intelligence and Smart Environments, vol. 15, no. 1, pp. 89-110, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]