Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Diaz, Ariela | Martin-Jimenez, Cynthiaa | Woo, Yenaa | Merino, Paolaa | Torre, Enriquea | Yepes, Manuela; b; c; *
Affiliations: [a] Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA | [b] Department of Neurology, Emory University, Atlanta, GA, USA | [c] Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
Correspondence: [*] Correspondence to: Manuel Yepes, Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, 954 Gatewood Road-NE, Atlanta, GA 30329-4208, USA. Tel.: +1 404 727 6468; Fax: +1 404 727 8070; E-mail: [email protected].
Abstract: Background:Urokinase-type plasminogen activator (uPA) is a serine proteinase found in excitatory synapses located in the II/III and V cortical layers. The synaptic release of uPA promotes the formation of synaptic contacts and the repair of synapses damaged by various forms of injury, and its abundance is decreased in the synapse of Alzheimer’s disease (AD) patients. Inactivation of the Wingless/Int1 (Wnt)-β-catenin pathway plays a central role in the pathogenesis of AD. Soluble amyloid-β (Aβ) prevents the phosphorylation of the low-density lipoprotein receptor-related protein-6 (LRP6), and the resultant inactivation of the Wnt-β-catenin pathway prompts the amyloidogenic processing of the amyloid-β protein precursor (AβPP) and causes synaptic loss. Objective:To study the role of neuronal uPA in the pathogenesis of AD. Methods:We used in vitro cultures of murine cerebral cortical neurons, a murine neuroblastoma cell line transfected with the APP-695 Swedish mutation (N2asw), and mice deficient on either plasminogen, or uPA, or its receptor (uPAR). Results:We show that uPA activates the Wnt-β-catenin pathway in cerebral cortical neurons by triggering the phosphorylation of LRP6 via a plasmin-independent mechanism that does not require binding of Wnt ligands (Wnts). Our data indicate that uPA-induced activation of the Wnt-β-catenin pathway protects the synapse from the harmful effects of soluble Aβ and prevents the amyloidogenic processing of AβPP by inhibiting the expression of β-secretase 1 (BACE1) and the ensuing generation of Aβ40 and Aβ42 peptides. Conclusion:uPA protects the synapse and antagonizes the inhibitory effect of soluble Aβ on the Wnt-β-catenin pathway by providing an alternative pathway for LRP6 phosphorylation and β-catenin stabilization.
Keywords: Amyloid-β protein precursor secretases, β-Catenin, plasmin, urokinase-type plasminogen activator
DOI: 10.3233/JAD-220320
Journal: Journal of Alzheimer's Disease, vol. 89, no. 3, pp. 877-891, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]