Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Domínguez-Prieto, Marta | Velasco, Ana | Tabernero, Arantxa | Medina, José M.; *
Affiliations: Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
Correspondence: [*] Correspondence to: José M. Medina, Instituto de Neurociencias de Castilla y León (INCYL), c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain. Tel.: +34 923 294500/Ext. 5313; E-mail: [email protected].
Abstract: Amyloid-β (Aβ) peptides, Aβ40, Aβ42, and recently Aβ25 - 35, have been directly implicated in the pathogenesis of Alzheimer’s disease (AD). We have previously shown that all three peptides decrease neuronal viability, but Aβ40 also promotes synaptic disassembling. In this work, we have studied the effects of these peptides on astrocytes in primary culture and found that the three Aβ peptides were internalized by astrocytes and significantly decreased astrocyte viability, while increasing ROS production. Aβ peptide internalization is temperature-dependent, a fact that supports the idea that Aβ peptides are actively endocytosed by astrocytes. However, inhibiting caveolae formation by methyl-beta-cyclodextrin or by silencing caveolin-1 with RNA interference did not prevent Aβ endocytosis, which suggests that Aβ peptides do not use caveolae to enter astrocytes. Conversely, inhibition of clathrin-coated vesicle formation by chlorpromazine or by silencing clathrin with RNA interference significantly decreased Aβ internalization and partially reverted the decrease of astrocyte viability caused by the presence of Aβ. These results suggest that Aβ is endocytosed by clathrin-coated vesicles in astrocytes. Aβ-loaded astrocytes, when co-incubated with non-treated astrocytes in separate wells but with the same incubation medium, promoted cell death in non-treated astrocytes; a fact that was associated with the presence of Aβ inside previously unloaded astrocytes. This phenomenon was inhibited by the presence of chlorpromazine in the co-incubation medium. These results suggest that astrocyte may perform Aβ transcytosis, a process that could play a role in the clearance of Aβ peptides from the brain to cerebrospinal fluid.
Keywords: Alzheimer’s disease, amyloid-β , astrocytes, clathrin-mediated endocytosis, transcytosis
DOI: 10.3233/JAD-180332
Journal: Journal of Alzheimer's Disease, vol. 65, no. 4, pp. 1109-1124, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]