Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Belkacemi, Abdenoura | Ramassamy, Charlesa; b; *
Affiliations: [a] Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Canada | [b] Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada
Correspondence: [*] Correspondence to: Charles Ramassamy, PhD, INRS- Institut Armand Frappier, 531, boul. des Prairies, Laval, Québec, H7 V 1B7, Canada. Tel.: +01 450 687 5010; Fax: +01 450 687 5510; E-mail: [email protected].
Abstract: In Alzheimer’s disease (AD) and in mild cognitive impairment (MCI) patients, by-products of lipid peroxidation such as acrolein accumulated in vulnerable regions of the brain. We have previously shown that acrolein is a highly reactive and neurotoxic aldehyde and its toxicity involves the alteration of several redox-sensitive pathways. Recently, protein-conjugated acrolein in cerebrospinal fluid has been proposed as a biomarker to distinguish between MCI and AD. With growing evidence of the early involvement of oxidative stress in AD etiology, one would expect that a successful therapy should prevent brain oxidative damage. In this regard, several studies have demonstrated that polyphenol-rich extracts exert beneficial effect on cognitive impairment and oxidative stress. We have recently demonstrated the efficacy of an anthocyanin formulation (MAF14001) against amyloid-β-induced oxidative stress. The aim of this study is to investigate the neuroprotective effect of MAF14001 as a mixture of anthocyanins, a particular class of polyphenols, against acrolein-induced oxidative damage in SK-N-SH neuronal cells. Our results demonstrated that MAF14001, from 5μM, was able to efficiently protect SK-N-SH cells against acrolein-induced cell death. MAF14001 was able to lower reactive oxygen species and protein carbonyl levels induced by acrolein. Moreover, MAF1401 prevented glutathione depletion and positively modulated, in the presence of acrolein, some oxidative stress-sensitive pathways including the transcription factors NF-κB and Nrf2, the proteins γ-GCS and GSK3β, and the protein adaptator p66Shc. Along with its proven protective effect against amyloid-β toxicity, these results demonstrate that MAF14001 could target multiple mechanisms and could be a promising agent for AD prevention.
Keywords: Acrolein, Alzheimer’s disease, anthocyanins, antioxidant, glutathione, oxidative stress, polyphenols
DOI: 10.3233/JAD-150770
Journal: Journal of Alzheimer's Disease, vol. 50, no. 4, pp. 981-998, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]