Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Groblewska, Magdalenaa | Muszyński, Pawełb | Wojtulewska-Supron, Aleksandrac | Kulczyńska-Przybik, Agnieszkab | Mroczko, Barbaraa; b; *
Affiliations: [a] Department of Biochemical Diagnostics, University Hospital in Białystok, Poland | [b] Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland | [c] Department of Psychiatry, Medical University of Białystok, Poland
Correspondence: [*] Correspondence to: Prof. Barbara Mroczko, Head of the Department of Neurodegeneration Diagnostics, Medical University of Białystok, Waszyngtona 15 A, 15-269 Białystok, Poland.Tel.: +48 85 7468710; [email protected]
Abstract: Calcium ions are crucial in the process of information transmission and integration in the central nervous system (CNS). These ions participate not only in intracellular mechanisms but also in intercellular processes. The changes in the concentration of Ca2 + ions modulate synaptic transmission, whereas neuronal activity induces calcium ion waves. Disturbed calcium homeostasis is thought to be one of the main features in the pathophysiology of Alzheimer’s disease (AD), and AD pathogenesis is closely connected to Ca2 + signaling pathways. The effects of changes in neuronal Ca2 + are mediated by neuronal calcium sensor (NCS) proteins. It has been revealed that NCS proteins, with special attention to visinin-like protein 1 (VILIP-1), might have a connection to the etiology of AD. In the CNS, VILIP-1 influences the intracellular neuronal signaling pathways involved in synaptic plasticity, such as cyclic nucleotide cascades and nicotinergic signaling. This particular protein is implicated in calcium-mediated neuronal injury as well. VILIP-1 also participates in the pathological mechanisms of altered Ca2 + homeostasis, leading to neuronal loss. These findings confirm the utility of VILIP-1 as a useful biomarker of neuronal injury. Moreover, VILIP-1 plays a vital role in linking calcium-mediated neurotoxicity and AD-type pathological changes. The disruption of Ca2 + homeostasis caused by AD-type neurodegeneration may result in the damage of VILIP-1-containing neurons in the brain, leading to increased cerebrospinal fluid levels of VILIP-1. Thus, the aim of this overview is to describe the relationships of the NCS protein VILIP-1 with the pathogenetic factors of AD and neurodegenerative processes, as well as its potential clinical usefulness as a biomarker of AD. Moreover, we describe the current and probable therapeutic strategies for AD, targeting calcium-signaling pathways and VILIP-1.
Keywords: Alzheimer’s disease, biomarkers, brain injury, neurodegeneration, visinin-like protein-1
DOI: 10.3233/JAD-150060
Journal: Journal of Alzheimer's Disease, vol. 47, no. 1, pp. 17-32, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]