Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ethell, Douglas W.; *
Affiliations: Molecular Neurobiology, Graduate College of Biomedical Sciences, Western University of Health Sciences, CA, USA and Neurodegeneration Division, Oceanside Biotechnology, LLC, San Diego, CA, USA
Correspondence: [*] Correspondence to: Doug Ethell, PhD, Molecular Neurobiology, Graduate College of Biomedical Sciences, Western University of Health Sciences, 701 East Second Street, Pomona, CA 91766, USA. E-mail: [email protected].
Abstract: Plaques and tangles may be manifestations of a more substantial underlying cause of Alzheimer's disease (AD). Disease-related changes in the clearance of amyloid-β (Aβ) and other metabolites suggest this cause may involve cerebrospinal fluid (CSF) flow through the interstitial spaces of the brain, including an archaic route through the olfactory system that predates neocortical expansion by three hundred million years. This olfactory CSF conduit (OCC) runs from the medial temporal lobe (MTL) along the lateral olfactory stria, through the olfactory trigone, and down the olfactory tract to the olfactory bulb, where CSF seeps through the cribriform plate to the nasal submucosa. Olfactory dysfunction is common in AD and could be related to alterations in CSF flow along the OCC. Further, reductions in OCC flow may impact CSF hydrodynamics upstream in the MTL and basal forebrain, resulting in less efficient Aβ removal from those areas—among the first affected by neuritic plaques in AD. Factors that reduce CSF drainage across the cribriform plate and slow the clearance of metabolite-laden CSF could include aging-related bone changes, head trauma, inflammation of the nasal epithelium, and toxins that affect olfactory neuron survival and renewal, as well as vascular effects related to diabetes, obesity, and atherosclerosis—all of which have been linked to AD risk. Problems with CSF-mediated clearance could also provide a link between these seemingly disparate factors and familial AD mutations that induce plaque and tangle formation. I hypothesize that disruptions of CSF flow across the cribriform plate are important early events in AD, and I propose that restoring this flow will enhance the drainage of Aβ oligomers and other metabolites from the MTL.
Keywords: Alzheimer's disease, amyloid-β peptides, cerebrospinal fluid, neurodegenerative disorder, olfactory bulb
DOI: 10.3233/JAD-130659
Journal: Journal of Alzheimer's Disease, vol. 41, no. 4, pp. 1021-1030, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]