Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Alzheimer's Disease: Advances for a New Century
Guest editors: George Perry, Xiongwei Zhu, Mark A. Smith, Aaron Sorensen and Jesús Avila
Article type: Review Article
Authors: Hernandez, Felixa; b | Lucas, Jose J.a; b | Avila, Jesusa; b; *
Affiliations: [a] Department of Neuroscience, Centro de Biologia Molecular ‘Severo Ochoa’ CSIC/UAM, Universidad Autonoma de Madrid, Madrid, Spain | [b] Centro de Investigacion en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
Correspondence: [*] Correspondence to: Jesus Avila, Department of Neuroscience, Centro de Biologia Molecular ‘Severo Ochoa’ CSIC/UAM, Universidad Autonoma de Madrid, Madrid 28049, Spain. E-mail: [email protected].
Abstract: Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed serine/threonine kinase that plays a key role in the pathogenesis of Alzheimer's disease (AD). GSK3 phosphorylates tau in most serine and threonine residues hyperphosphorylated in paired helical filaments, and GSK3 activity contributes both to amyloid-β production and amyloid-β-mediated neuronal death. Thus, mice generated in our laboratory with conditional overexpression of GSK3 in forebrain neurons (Tet/GSK3β mice) recapitulate aspects of AD neuropathology such as tau hyperphosphorylation, apoptotic neuronal death, and reactive astrocytosis, as well as spatial learning deficit. In this review, we describe recent contributions of our group showing that transgene shutdown in that animal model leads to normal GSK3 activity, normal phospho-tau levels, diminished neuronal death, and suppression of the cognitive deficit, thus further supporting the potential of GSK3 inhibitors for AD therapeutics. In addition, we have combined transgenic mice overexpressing the enzyme GSK3β with transgenic mice expressing tau with a triple FTDP-17 mutation that develop prefibrillar tau-aggregates. Our data suggest that progression of the tauopathy can be prevented by administration of lithium when the first signs of neuropathology appear. Further, it is possible to partially reverse tau pathology in advanced stages of the disease, although the presence of already assembled neurofibrillary tangle-like structures cannot be reversed.
Keywords: Alzheimer's disease, GSK3, tau
DOI: 10.3233/JAD-2012-129025
Journal: Journal of Alzheimer's Disease, vol. 33, no. s1, pp. S141-S144, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]