Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Schwab, Claudia; * | Yu, Sheng | Wong, Winnie | McGeer, Edith G. | McGeer, Patrick L.
Affiliations: Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada
Correspondence: [*] Correspondence to: Claudia Schwab, Kinsmen Laboratory of Neurological Research, Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada. Tel.: +1 604 822 7379; Fax: +1 604 822 7086; E-mail: [email protected].
Abstract: The GABAergic system is the main inhibitory neurotransmitter system in the vertebrate brain. Although it is well established that the GABAergic system is affected in neuropsychiatric disorders, in Alzheimer's disease (AD) it has been considered to be relatively spared. In this study we describe the immunohistochemical localization of the main enzymes of the GABAergic system; glutamate decarboxylase 65 (GAD65), GAD67, and GABA transferase (GABAT) in human brain. In neocortex, hippocampus, basal ganglia, and cerebellum, GAD65 and GAD67 immunoreactivity were found in neuropil granules, possibly axonal boutons or terminals, and in a subset of small to midsized neurons. GAD65 preferentially stained neuropil granules, while GAD67 preferentially stained neuronal cell bodies. GABAT intensely labeled many types of neurons and glia cells. While GAD65 and GAD67 stained the cytoplasm of cells homogeneously, GABAT labeling appeared irregular and granular. GAD65 immunoreactivity of neurons and neuropil was severely reduced in AD middle temporal gyrus, hippocampus, and putamen as determined by fluorescence and light microscopic immunohistochemistry. Western blotting revealed a similar reduction of GAD65, but not GAD67, protein levels in the middle temporal gyrus of AD. Our results suggest that the GABAergic system is more severely affected in AD than previously reported. This deficit may contribute to AD pathogenesis by loss of GABAergic inhibitory activity.
Keywords: ABAT, Alzheimer's disease, GABAergic system, GABAT, GAD65, GAD67, human, immunohistochemistry, western blot
DOI: 10.3233/JAD-2012-121330
Journal: Journal of Alzheimer's Disease, vol. 33, no. 4, pp. 1073-1088, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]