Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Chenga | Rodriguez, Cynthiab | Spaulding, Jamesa | Aw, Tak Yeeb | Feng, Junea; *
Affiliations: [a] Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA | [b] Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
Correspondence: [*] Correspondence to: June Feng, Department of Biomedical Engineering, Louisiana Tech University, 818 Nelson Avenue, Ruston, LA 71272, USA. Tel.: +1 318 257 5236; Fax: +1 318 257 4000; E-mail: [email protected].
Abstract: Glutathione plays an essential role in the intracellular antioxidant defense against oxidant radicals, especially the •OH radical. To understand the early and progressive cellular changes in the development of Alzheimer's disease (AD), we investigated reduced glutathione/oxidized glutathione (GSH/GSSG) status in a double mutated AD transgenic mouse model (B6.Cg-Tg), which carries Swedish amyloid-β protein precursor mutation (AβPPswe) and exon 9 deletion of the PSEN1 gene. In this study, we quantified and compared both GSH/GSSG and mixed-disulfide (Pr-SSG) levels in blood samples and three anatomic positions in brain (cerebrum, cerebellum, and hippocampus) at 3 age stages (1, 5, and 11 months) of AD transgenic (Tg)/wild type mice. The present study was designed to characterize and provide insight into the glutathione redox state of both brain tissues and blood samples at different disease stages of this Tg model. The level of Pr-SSG increased in all AD brain tissues and blood compared with controls regardless of age. The GSH/GSSG ratio in AD-Tg brain tissue started at a higher value at 1 month, fell at the transitional period of 5 months, right before the onset of amyloid plaques, followed by an increase in GSSG and associated decrease of GSH/GSSG at 11 months. These results suggest that formation of Pr-SSG may be an early event, preceding amyloid plaque appearance, and the data further implies that tissue thiol redox is tightly regulated. Notably, the high basal levels of mixed-disulfides in hippocampus suggest a potential for increased oxidative damage under oxidizing conditions and increased GSSG in this vulnerable region.
Keywords: Alzheimer's disease, glutathione, mixed disulfide, oxidized glutathione
DOI: 10.3233/JAD-2011-111244
Journal: Journal of Alzheimer's Disease, vol. 28, no. 3, pp. 655-666, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]