Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Aboukhatwa, Marwa | Luo, Yuan; *
Affiliations: Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
Correspondence: [*] Correspondence to: Dr. Yuan Luo, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N Pine St, Baltimore, MD 21201, USA. Tel.: +1 410 706 6639; Fax: +1 410 706 0346; E-mail: [email protected] or [email protected].
Abstract: It is estimated that 30%–50% of Alzheimer's disease (AD) patients are diagnosed with major or minor depression. Research that addresses the relationship between these two diseases will benefit patients who suffer from depression comorbid with AD and allow further understanding of the neuroanatomy of depression. A clinical study showed that the use of the antidepressant fluoxetin concomitantly with the FDA-approved AD drug rivastigmine provided an improvement in the daily activities and the overall functioning in the patients with cognitive impairment. In an attempt to understand the underlying mechanism for the antidepressant's beneficial effect in AD patients, we evaluated the effects of different classes of antidepressants on the amyloid-β peptide (Aβ) species in N2a neuroblastoma cells overexpressing amyloid-β protein precursor. The effect of increasing antidepressant concentrations on the intracellular and secreted Aβ species is investigated by Western blotting. The tested antidepressants include fluoxetine, paroxetine, maprotiline, and imipramine. Fluoxetine and paroxetine at 10 μM significantly decreased the intracellular level of Aβ oligomers and increased the level of Aβ monomers. However, imipramine and maprotiline increased the intracellular amount of Aβ monomers without affecting Aβ oligomers. Based on these results, it is possible that fluoxetine and paroxetine could be beneficial to AD patients via reducing the level of the cytotoxic oligomers and keeping the Aβ peptide in the monomeric form. These data could explain some of the beneficial effects of antidepressants in AD patients observed in clinical studies.
Keywords: Alzheimer's disease, amyloid beta toxicity, antidepressant drugs, cell model
DOI: 10.3233/JAD-2011-101113
Journal: Journal of Alzheimer's Disease, vol. 24, no. 2, pp. 221-234, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]