Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zeng, Yan | Zhao, Danyun | Xie, Cui-Wei; *
Affiliations: Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
Correspondence: [*] Correspondence to: C.W. Xie, Department of Psychiatry, Semel Institute for Neuroscience, University of California Los Angeles, 760 Westwood Plaza, Box 77, Los Angeles, CA 90024, USA. Tel.: +1 310 206 0083; Fax: +1 310 206 2946; E-mail: [email protected].
Abstract: Amyloid-β (Aβ) peptide-induced impairment of hippocampal synaptic plasticity is considered an underlying mechanism for memory loss in the early stages of Alzheimer's disease and its animal models. We previously reported inhibition of long-term potentiation (LTP) and miniature excitatory postsynaptic currents by oligomeric Aβ1–42 at hippocampal synapses. While multiple cellular mechanisms could be involved in Aβ-induced synaptic dysfunction, blockade of activity-dependent autophosphorylation of Ca2+ and calmodulin-dependent protein kinase II (CaMKII) appeared to be a major component of Aβ action in our studies. The present study further tested this hypothesis and examined the therapeutic potential of trkB receptor-acting neurotrophins in rescuing Aβ-induced synaptic and signaling impairments. As expected, treatment of rat hippocampal slices with Aβ1–42 significantly reduced LTP in the Schaffer collateral-CA1 pathway and dentate medial perforant path. LTP-associated CaMKII activation and AMPA receptor phosphorylation were blocked by Aβ1–42 at the same concentration that inhibited LTP. Aβ-induced LTP impairment, however, was prevented when slices were co-treated with neurotrophin 4 (NT4). Western blotting and immunohistochemical analyses confirmed that treatment with NT4 or brain-derived neurotrophic factor, another trkB-acting neurotrophin, could oppose Aβ action, enhancing autophosphorylation of CaMKII, and AMPA receptor phosphorylation at a CaMKII-dependent site. These findings support the view that CaMKII is a key synaptic target of Aβ toxicity as well as a potential therapeutic site of neurotrophins for Alzheimer's disease.
Keywords: Amyloid-β, calcium and calmodulin-dependent protein kinase II, hippocampus, long-term potentiation, neurotrophins
DOI: 10.3233/JAD-2010-100264
Journal: Journal of Alzheimer's Disease, vol. 21, no. 3, pp. 823-831, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]