Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Brennan-Krohn, Thea | Salloway, Stephen | Correia, Stephen | Dong, Matthew | de la Monte, Suzanne M.; *
Affiliations: From the Departments of Pathology (Neuropathology), Neurology, Medicine, and Psychiatry and Human Behavior, the Rhode Island Hospital, Butler Hospital, Veterans Affairs Medical Center, and Warren Alpert Medical School of Brown University, Providence, RI, USA
Correspondence: [*] Correspondence to: Dr. Suzanne M. de la Monte, MD, MPH, Pierre Galletti Research Building, Rhode Island Hospital, 55 Claverick Street, Room 419, Providence, RI 02903, USA. Tel.: +1 401 444 7364; Fax: +1 401 444 2939; E-mail: [email protected].
Note: [] Handling Associate Editor: Jack de la Torre
Abstract: CADASIL is a genetic vascular dementia caused by mutations in the Notch 3 gene on Chromosome 19. However, little is known about the mechanisms of vascular degeneration. We characterized upstream components of Notch signaling pathways that may be disrupted in CADASIL, by measuring expression of insulin, IGF-1, and IGF-2 receptors, Notch 1, Notch 3, and aspartyl-(asparaginyl)-β-hydroxylase (AAH) in cortex and white matter from 3 CADASIL and 6 control brains. We assessed CADASIL-associated cell loss by measuring mRNA corresponding to neurons, oligodendroglia, and astrocytes, and indices of vascular degeneration by measuring smooth muscle actin (SMA) and endothelin-1 expression in isolated vessels. Immunohistochemical staining was used to assess SMA degeneration. Significant abnormalities, including reduced cerebral white matter mRNA levels of Notch 1, Notch 3, AAH, SMA, IGF receptors, myelin-associated glycoproteins, and glial fibrillary acidic protein, and reduced vascular expression of SMA, IGF receptors, Notch 1, and Notch 3 were detected in CADASIL-lesioned brains. In addition, we found CADASIL-associated reductions in SMA, and increases in ubiquitin immunoreactivity in the media of white matter and meningeal vessels. No abnormalities in gene expression or immunoreactivity were observed in CADASIL cerebral cortex. In conclusion, molecular abnormalities in CADASIL are largely restricted to white matter and white matter vessels, corresponding to the distribution of neuropathological lesions. These preliminary findings suggest that CADASIL is mediated by both glial and vascular degeneration with reduced expression of IGF receptors and AAH, which regulate Notch expression and function.
Keywords: Aspartyl-(asparaginyl)-β-hydroxylase, human, Notch, vascular dementia, white matter degeneration
DOI: 10.3233/JAD-2010-100036
Journal: Journal of Alzheimer's Disease, vol. 21, no. 4, pp. 1393-1402, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]